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Fourier with a signal processing mindset

Useful way to represent functions via complex exponentials &/®! - the Fourier
Inversion Theorem,
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What's the reason to go beyond Fourier?

- Complex exponentials — the building blocks of the Fourier transform — are the
eigenfunctions of linear time-invariant systems, %! — H(jw)e/®".

- In practice, many systems and physical phenomena are modeled as linear and
time-varying / non-stationary.
— radar, sonar, holography, quantum optics, non-destructive testing

- Polynomial phase models are used for modeling time-varying systems.
— basis functions of the form e/¢(!)
— e.g., quadratic chirps specified by @(t) = axt® + ast + ag

- Study of polynomial phase representations led to the development of unitary
transformations that generalize the Fourier transform.
— the Fractional Fourier Transform (FrFT) [Wiener'29/Condon’37]
— the Linear Canonical Transform (LCT) [Moshinsky/Quesne’71]
— the Special Affine Fourier Transform (SAFT) [Abe/Sheridan’94]

Olga Graf (TUM) 4 /21



Fractionalization of the Fourier transform

Edward Condon
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IMMERSION OF THE FOURIER TRANSFORM IN A CONTINUOUS

GROUP OF FUNCTIONAL TRANSFORMATIONS
By E. U. ConpoN

DePARTMENT OF PHYSICS, PRINCETON UNIVERSITY
Communicated January 20, 1937

Hence the operation F generates a cyclic group of order 4 which is iso-
morphic with the group of rotations of a plane about a fixed point through
multiples of a right angle. Now every continuous group of transformations
is generated by an Hermitian operator, and conversely every Hermitian
operator generates a group of unitary transformations." Hence there exists
a continuous group of functional transformations containing the ordinary
Fourier transforms as a subgroup. In this paper the continuous group is
explicitly found. It will not, however, be necessary to make further
reference in the work that follows to the general immersion theory.

It is convenient to introduce a group
space as shown in the figure in which W
the notation x, is assigned to the argu-
ment of a function which is generated
out of f(x) by application to it of the

functional transformation F,. In this xa
notation Fyf(x) will be a transformed func-

tion of the argument x, which we may [

write as fy(x,). Evidently x is x; and f(x) X

is more explicitly fi(xy) in this notation.
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Fractionalization of the Fourier transform

. . T (n) _ ( gn=1) 5(n)
Consujer the Fourier operator composition: 7, =1, 7, = (ffAFT o ffAFT) :
nez

Fourier Transform is Cyclic on Group of 4

f=720101]

‘7/\9 [f] +

The =R m t =g O

— S
= 7 [f]

~

f=78 11
Olga Graf (TUM) 6/21



Generalization of the Fourier transform

(a) Fractional Fourier Transform
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(b) Fresnel Transform
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(d) Special Affine Fourier Transform
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Generalization of the Fourier transform

The Special Affine Fourier Transform (SAFT) of a signal is a mapping Fsart : f — fag
which is defined by an integral transformation parametrized by a matrix Ag,

a7 _J(fxkag(r @), b#0,
Zaslll =as(®) = {ﬁei"zd(wp)zﬂwqf(d(w —p)), b=0.
. A(SZXB) is the SAFT parameter matrix,

ns= 251 =[]

with an offset vector A = [p q]T representing displacement p and modulation g,
and ‘AL‘ =1.

* Kpg Is the SAFT kernel based on a complex exponential of quadratic form. Let
r=[t ] denote the time-frequency coordinates, then

Kag(F) = Ky exp(—j(r'Ur+v'r)), where
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Generalization of the Fourier transform

SAFT Parameters (As)

Corresponding Transform

SAFT Parameters (As)

Corresponding Signal Operation
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Fourier Transform (FT)

Offset Fourier Transform

Fractional Fourier Transform (FrFT)
Offset Fractional Fourier Transform
Linear Canonical Transform (LCT)
Fresnel Transform

Laplace Transform (LT)

Fractional Laplace Transform
Bilateral Laplace Transform
Gauss—Weierstrass Transform

Bargmann Transform

[ el 0] =Aa
11 5] =Ar
1) ¢] =Ac

Time Scaling
Time Shift
Frequency Shift/Modulation

SAFT Parameters (As)

Corresponding Optical Operation

[ cosgsin

[+918] = A

(o711 0] =4y

[e(f egﬁi 8] =Ag
[comhasimbal 9] = A,

Rotation

Lens Transformation

Free Space Propagation
Magnification

Hyperbolic Transformation
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Example

Let the parameter matrix be
__|lab|p| _ | cos(6) sin(6)
Ao=[25]5) = [0 &

| 0
cd|qg —sin(6) cos(0) | 0]

Then we have

t
)

r'ur+vir=[t o

1 [cos(@) —1]

1 t
2sin(@)| —1 cos(0) +sin(9)[0 0] [w]

1
— E(tz + w?)cot(8) — jotcsc(H)

and the corresponding transform is the Fractional Fourier Transform (FrFT)

fo(@) = Ky, /_O; f(t)exp (é(z‘2 +®?)cot(0) —jwtcsc(@)) dt.
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The Inverse SAFT

SAFT matrix maps time-frequency coordinates r = [t ] into its affine transformed
version,

6] 2T (28] [4] + (5] =r 25 Acr A

Hence, the inverse SAFT is defined by affine transform that allows for the mapping

at+bw+p7 Inverse SAFT
[ct+dw+q} ! [(D]

It can be shown that the inverse parameter matrix A% is

ALY = {*d ‘b’bq‘dp] = [ AT -ATA ]

—c +a | cp—aq

Thus, the inverse transform (iISAFT) is defined as an SAFT with matrix A",
‘ggAgV[f] — f(t) — KAiS”V<fASa KAinV('7 t))?

where KA.nV(a) t) = *S(t, o) and KAiSnv = exp (é(cdp + abg? Zadpq)).
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Subspace of SAFT-bandlimited functions

- By SAFT-bandlimited function, we refer to a signal whose SAFT has bounded
support.

Definition [Bhandari/Zayed]
Let A = b/Q. The family of functions

1 _aP=(nn?) . tna t
Vi = span{qon(t) — el e P 5 sinc (— — n) }
A A nez

forms an orthonormal subspace of SAF I-bandlimited functions with maximum admis-
sible frequency ®max = 7€) = b/ A.
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Extension of Shannon’s sampling theorem

« Any function that belongs to the subspace of SAFT-bandlimited functions may be
exactly recovered via its orthogonal projection onto this subspace, i.e., f = Zyf.

Theorem (Shannon’s Sampling in SAFT domain) [Stern’07/Xiang et al.’'12]

2
- gt
—I2p

A

Pof = Y {F, o) on(t) =

nez

.a(nA 2 . t—n
Y f(nA)e % e P sinc (i — n) .

nez A

Intuition: You can recover the original function exactly from its samples!
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One-bit sampling of bandlimited functions

« In conventional systems, Shannon-Nyquist approach is used. Sampling amounts
to
Fon: f(t) — f[n]=f(nT), neZ, T>0.

« Our approach is based on
S f(t) — q[n] € {—1,1}

which is implemented by

q[n] =sgn(u[n—1]+f[n])
uln] =ul[n—1]+f[n] —q[n].
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One-bit sampling of bandlimited functions
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q(n] = sgn (u[n—1]+f[n]) recovery F(f) =~ Y qrlo (_ _ _)
uln] = uln—1]+ f[n] — q[n] — lrgz T i)
One— Bi?rSampling lnter;;glation

Remarkably, the recovery follows essentially Shannon’s sampling formula, where A
denotes the oversampling factor and ¢(t) is a AQ-bandlimited function.
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One-bit sampling of bandlimited functions

g[n]:E[n]—S[n—1l

Finite Difference Filter

Time domain
nl = fin| —
el in| —(uxv)[n]
One—bit Data Noise

[F()—1(1)] <skle
Max—Er?gr Bound

[Daubechies/DeVore’'03]

Olga Graf (TUM)

L>1,
V(@) = (1

|y maxq|uf]l,

vIH[n] = (v --

_ o)t =

-k v)[N]

2(sin(w/2))"

Fourier domain

Q(w) = Flo)-U(o) V(o)
One—bit Data

"
Noise

P (w) = 2(sin (w/2))"
=2

LA >1

Larger A = Signal is
concentrated around origin.

Smaller the error.
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One-bit sampling in FrFT domain

« Assume we have a function f that is (2—bandlimited in the FrFT domain or,

feBE < fo(0) =g (@) 1)< ().

« fis no longer bandlimited in Fourier domain.

« Convolution of two functions does not amount to a multiplication of their
spectrums in the FrFT domain: .74 [f * g] # Fa[f]-F7a4[9]-

= conventional noise shaping fails!
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One-bit sampling in FrFT domain

[Bhandari/Graf/Krahmer/Zayed’20]

» Generalized One-Bit Sampling
For any f € B < fy () = fo (0) 1)< (),

UO E(_171)7
_en=1(T)?
uln] :f(”TT)Jre /" <)~) COt6u[n—1]—q9[n],

n 2
qol] — csgn (e 255 (7) °°t9u[n—11+f<”%)),

where
csgn(z) =sgn(Re(z))+/jsgn(Im(z)).

« Recovery from One-Bit Samples
Given gg[n), f € BY is approximated by

(nT)?
a5t (L1)

nez

e—j%cote
(1) = —
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A basic bound on reconstruction error

« Our strategy entails the same error bound as in Fourier domain.

Proposition (Error bound)
Let f € BY be such that ||f||, < 1and A > 1. Given one-bit samples, the reconstruction
is bounded by the following inequality,

I =1l < 2lleWllL,.

« This bound is based on the accumulation of noise in the low-pass FrFT spectrum,

2
e e—1700t9
f-f)=|~——5—

"~

Error U _

-~

Low-pass contamination due to noise
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Experimental demonstration

» Consider a signal generated by chirp-modulating a mixture of sinusoids,

)= (

2
5 COS

12
(t)+ 3sin (5t+ ) e7/2°'5.

« Note that f € Bg/s and clearly f ¢ Bg/z (Fourier).

(a) FrFT Bandlimited Signal with f==/3
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(c) Reconstruction from One-Bit Samples (d) MSE vs FrFT Order (0)
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Conclusions

« The FrFT and the SAFT generalize the Fourier transform.
— Due to this flexibility, they have found a number of theoretical and practical applications.

- We have introduced a new signal representation for the FrFT domain.

— We presented a one-bit sampling and reconstruction method in the FrFT domain.
— The reconstruction error bound is the same as Fourier domain bound.
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Conclusions

« The FrFT and the SAFT generalize the Fourier transform.
— Due to this flexibility, they have found a number of theoretical and practical applications.

- We have introduced a new signal representation for the FrFT domain.

— We presented a one-bit sampling and reconstruction method in the FrFT domain.
— The reconstruction error bound is the same as Fourier domain bound.

Thank you!
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