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Fourier with a signal processing mindset

Useful way to represent functions via complex exponentials ejω t - the Fourier
Inversion Theorem,

f̂ (ω) = 1√
2π

∫
∞

−∞

f (t)e−jω tdt = 〈f , 1√
2π

ejω t〉,

f (t) = 1√
2π

∫
∞

−∞

f̂ (ω)ejω tdω = 1√
2π

∫
∞

−∞

〈f , 1√
2π

ejω t〉ejω tdω.
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What’s the reason to go beyond Fourier?
• Complex exponentials — the building blocks of the Fourier transform — are the

eigenfunctions of linear time-invariant systems, ejω t → H(jω)ejω t .

• In practice, many systems and physical phenomena are modeled as linear and
time-varying / non-stationary.
→ radar, sonar, holography, quantum optics, non-destructive testing

• Polynomial phase models are used for modeling time-varying systems.
→ basis functions of the form ejϕ(t)

→ e.g., quadratic chirps specified by ϕ(t) = a2t2 + a1t + a0

• Study of polynomial phase representations led to the development of unitary
transformations that generalize the Fourier transform.
→ the Fractional Fourier Transform (FrFT) [Wiener’29/Condon’37]
→ the Linear Canonical Transform (LCT) [Moshinsky/Quesne’71]
→ the Special Affine Fourier Transform (SAFT) [Abe/Sheridan’94]
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Fractionalization of the Fourier transform
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Fractionalization of the Fourier transform
Consider the Fourier operator composition: F

(0)
ΛΛΛFT

= f , F
(n)
ΛΛΛFT

=
(
F

(n−1)
ΛΛΛFT

◦F
(n)
ΛΛΛFT

)
,

n ∈ Z+
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Generalization of the Fourier transform
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Generalization of the Fourier transform
The Special Affine Fourier Transform (SAFT) of a signal is a mapping FSAFT : f → fΛΛΛS
which is defined by an integral transformation parametrized by a matrix ΛΛΛ S,

FΛΛΛS
[f ] = f̂ΛΛΛS

(ω) =

{
〈f ,κΛΛΛS

(·,ω)〉, b 6= 0,√
dej cd

2 (ω−p)2+jωqf (d(ω−p)), b = 0.

• ΛΛΛ
(2×3)
S is the SAFT parameter matrix,

ΛΛΛ S =
[

a b | p
c d | q

]
≡
[

ΛΛΛ L λλλ

]
,

with an offset vector λλλ = [p q]T representing displacement p and modulation q,
and |ΛΛΛ L| = 1.

• κΛΛΛS
is the SAFT kernel based on a complex exponential of quadratic form. Let

r = [t ω ]T denote the time-frequency coordinates, then

κΛΛΛS
(r) = K ∗

ΛΛΛS
exp(−j(rT Ur + vT r)), where

U = 1
2b

[
a −1
−1 d

]
, v = 1

b

[
p

bq−dp

]
, KΛΛΛS

= 1√
j2πbexp

(
j dp2

2b

)
.
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Generalization of the Fourier transform
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Example
Let the parameter matrix be

ΛΛΛ θ =
[

a b | p
c d | q

]
=
[

cos(θ ) sin(θ ) | 0
−sin(θ ) cos(θ ) | 0

]
.

Then we have

rT Ur + vT r = [t ω ]
1

2sin(θ )

[
cos(θ ) −1
−1 cos(θ )

][
t
ω

]
+

1
sin(θ )

[0 0]

[
t
ω

]
=

1
2

(t2 + ω
2)cot(θ )− jω tcsc(θ )

and the corresponding transform is the Fractional Fourier Transform (FrFT)

f̂θ (ω) = KΛΛΛ θ

∫
∞

−∞

f (t)exp
(

j
2

(t2 + ω
2)cot(θ )− jω tcsc(θ )

)
dt .
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The Inverse SAFT
SAFT matrix maps time-frequency coordinates r = [t ω ]T into its affine transformed
version, [

t
ω

] SAFT−−−→
[

a b
c d

][
t
ω

]
+
[ p

q
]
≡ r SAFT−−−→ΛΛΛ Lr + λλλ .

Hence, the inverse SAFT is defined by affine transform that allows for the mapping[ at+bω+p
ct+dω+q

] Inverse SAFT−−−−−−−→
[

t
ω

]
.

It can be shown that the inverse parameter matrix ΛΛΛ
inv
S is

ΛΛΛ
inv
S :=

[
+d −b | bq−dp
−c +a | cp−aq

]
≡
[

ΛΛΛ
−1
L −ΛΛΛ

−1
L λλλ

]
.

Thus, the inverse transform (iSAFT) is defined as an SAFT with matrix ΛΛΛ
inv
S ,

F
ΛΛΛ

inv
S

[̂f ] = f (t) = K
ΛΛΛ

inv
S
〈̂fΛΛΛS

,κ
ΛΛΛ

inv
S

(·, t)〉,

where κ
ΛΛΛ

inv
S

(ω, t) = κ∗
ΛΛΛS

(t ,ω) and K
ΛΛΛ

inv
S

= exp
(

j
2(cdp2 + abq2−2adpq)

)
.
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Subspace of SAFT-bandlimited functions

• By SAFT-bandlimited function, we refer to a signal whose SAFT has bounded
support.

Definition [Bhandari/Zayed]
Let ∆ = b/Ω. The family of functions

VΛΛΛS
BL = span

{
ϕn(t) =

1
∆

e−j a(t2−(n∆)2)
2b e−jp t−n∆

b sinc
(

t
∆
−n
)}

n∈Z

forms an orthonormal subspace of SAFT-bandlimited functions with maximum admis-
sible frequency ωmax = πΩ = bπ/∆.
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Extension of Shannon’s sampling theorem

• Any function that belongs to the subspace of SAFT-bandlimited functions may be
exactly recovered via its orthogonal projection onto this subspace, i.e., f = Pϕ f .

Theorem (Shannon’s Sampling in SAFT domain) [Stern’07/Xiang et al.’12]

Pϕ f = ∑
n∈Z
〈f ,ϕn〉ϕn(t) =

e−j at2
2b

∆ ∑
n∈Z

f (n∆)ej a(n∆)2
2b e−jp t−n∆

b sinc
(

t
∆
−n
)
.
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One-bit sampling of bandlimited functions
• In conventional systems, Shannon-Nyquist approach is used. Sampling amounts

to
SSh : f (t)→ f [n] = f (nT ), n ∈ Z, T > 0.

• Our approach is based on

S1B : f (t)→ q[n] ∈ {−1,1}

which is implemented by

q [n] = sgn (u [n−1] + f [n])

u [n] = u [n−1] + f [n]−q [n] .
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One-bit sampling of bandlimited functions

q [n] = sgn (u [n−1] + f [n])

u [n] = u [n−1] + f [n]−q [n]︸ ︷︷ ︸
One−Bit Sampling

Recovery−−−−−→ f̃ (t) =
1
λ

∑
n∈Z

q [n]ϕ

(
t
T
− n

λ

)
︸ ︷︷ ︸

Interpolation

Remarkably, the recovery follows essentially Shannon’s sampling formula, where λ

denotes the oversampling factor and ϕ(t) is a λ Ω-bandlimited function.
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One-bit sampling of bandlimited functions

∆[n] = δ [n]−δ [n−1]︸ ︷︷ ︸
Finite Difference Filter

L > 1, v [L][n] = (v ∗ · · · ∗v)[n]

V̂ [L](ω) = (1−ejω)L = 2(sin(ω/2))L

Time domain

q [n]︸︷︷︸
One−bit

= f [n]︸︷︷︸
Data

− (u ∗v) [n]︸ ︷︷ ︸
Noise

Fourier domain

Q̂(ω)︸ ︷︷ ︸
One−bit

= F̂ (ω)︸ ︷︷ ︸
Data

− Û(ω)V̂ (ω)︸ ︷︷ ︸
Noise

|f (t)− f̃ (t)|︸ ︷︷ ︸
Max−Error Bound

6 1
λ L‖ϕ(L)‖L1maxn|u[n]|, L,λ > 1

[Daubechies/DeVore’03]

Larger λ ⇒ Signal is
concentrated around origin.
Smaller the error.
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One-bit sampling in FrFT domain
• Assume we have a function f that is Ω–bandlimited in the FrFT domain or,

f ∈ Bθ

Ω⇔ f̂θ (ω) = f̂θ (ω)1|ω|6Ω (ω) .

• f is no longer bandlimited in Fourier domain.
• Convolution of two functions does not amount to a multiplication of their

spectrums in the FrFT domain: FΛΛΛS
[f ∗g] 6= FΛΛΛS

[f ]FΛΛΛS
[g].

⇒ conventional noise shaping fails!
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One-bit sampling in FrFT domain
[Bhandari/Graf/Krahmer/Zayed’20]

• Generalized One-Bit Sampling
For any f ∈ Bθ

Ω⇔ f̂θ (ω) = f̂θ (ω)1|ω|6Ω (ω) ,

u[0] ∈ (−1,1) ,

u[n] = f
(nT

λ

)
+ e
−j 2n−1

2

(T
λ

)2
cotθ

u[n−1]−qθ [n],

qθ [n] = csgn
(

e−j 2n−1
2 (T

λ
)

2
cotθu[n−1] + f

(nT
λ

))
,

where
csgn (z) = sgn (Re (z)) + j sgn (Im (z)) .

• Recovery from One-Bit Samples
Given qθ [n], f ∈ Bθ

Ω is approximated by

f̃ (t) =
e−j t2

2 cotθ

λ
∑
n∈Z

qθ [n]ej (nT )2

2λ2 cotθ
ϕ

(
t
T
− n

λ

)
.
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A basic bound on reconstruction error
• Our strategy entails the same error bound as in Fourier domain.

Proposition (Error bound)
Let f ∈Bθ

Ω be such that ‖f‖L∞
6 1 and λ > 1. Given one-bit samples, the reconstruction

is bounded by the following inequality,

‖f − f̃‖L∞
6 1

λ
‖ϕ(1)‖L1.

• This bound is based on the accumulation of noise in the low-pass FrFT spectrum,

f (t)− f̃ (t)︸ ︷︷ ︸
Error

=

e−j t2
2 cotθ

λ

 ∑
n∈Z

(
⇀
u ∗∆

)
[n]ϕ

(
t
T
− n

λ

)
︸ ︷︷ ︸

Low-pass contamination due to noise

.

Olga Graf (TUM) 19 / 21



Experimental demonstration
• Consider a signal generated by chirp-modulating a mixture of sinusoids,

f (t) =
(2

5 cos(t) + 1
2 sin

(5
2t + π

6

))
e−j t2

2 cot π

3 .

• Note that f ∈ Bπ/3
Ω and clearly f /∈ Bπ/2

Ω (Fourier).
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Conclusions

• The FrFT and the SAFT generalize the Fourier transform.
→ Due to this flexibility, they have found a number of theoretical and practical applications.

• We have introduced a new signal representation for the FrFT domain.
→ We presented a one-bit sampling and reconstruction method in the FrFT domain.
→ The reconstruction error bound is the same as Fourier domain bound.

Thank you!

Olga Graf (TUM) 21 / 21



Conclusions

• The FrFT and the SAFT generalize the Fourier transform.
→ Due to this flexibility, they have found a number of theoretical and practical applications.

• We have introduced a new signal representation for the FrFT domain.
→ We presented a one-bit sampling and reconstruction method in the FrFT domain.
→ The reconstruction error bound is the same as Fourier domain bound.

Thank you!

Olga Graf (TUM) 21 / 21


	Generalization of the Fourier transform: SAFT
	Re-thinking Shannon's sampling theory in SAFT domain

